Organic Electrochemical Transistors functionalized with Protein Minibinders for Sensitive and Specific Detection of SARS‐CoV‐2

نویسندگان

چکیده

There is a need for rapid, sensitive, specific, and low-cost virus sensors. Recent work has demonstrated that organic electrochemical transistors (OECTs) can detect the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. Here, simple approach to fabrication of OECT devices with excellent stability unprecedented sensitivity specificity detection SARS-CoV-2 demonstrated. The rely on engineered protein minibinder LCB1, which binds strongly SARS-CoV-2. resulting exhibit receptor binding domain (RBD). These results demonstrate simple, effective, biomolecular sensor applicable real-time general strategy device design be applied other pathogenic viruses.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

fabrication of new ion sensitive field effect transistors (isfet) based on modification of junction-fet for analysis of hydronium, potassium and hydrazinium ions

a novel and ultra low cost isfet electrode and measurement system was designed for isfet application and detection of hydronium, hydrazinium and potassium ions. also, a measuring setup containing appropriate circuits, suitable analyzer (advantech board), de noise reduction elements, cooling system and pc was used for controlling the isfet electrode and various characteristic measurements. the t...

High transconductance organic electrochemical transistors

The development of transistors with high gain is essential for applications ranging from switching elements and drivers to transducers for chemical and biological sensing. Organic transistors have become well-established based on their distinct advantages, including ease of fabrication, synthetic freedom for chemical functionalization, and the ability to take on unique form factors. These devic...

متن کامل

Detection of glutamate and acetylcholine with organic electrochemical transistors based on conducting polymer/platinum nanoparticle composites.

The aim of the study is to open a new scope for organic electrochemical transistors based on PEDOT:PSS, a material blend known for its stability and reliability. These devices can leverage molecular electrocatalysis by incorporating small amounts of nano-catalyst during the transistor manufacturing (spin coating). This methodology is very simple to implement using the know-how of nanochemistry ...

متن کامل

Diffusion Driven Selectivity in Organic Electrochemical Transistors

Organic Electrochemical transistors (OECTs) present unique features for their strategic combination with biomedical interfaces, simple and low voltage operation regime and sensing ability in aqueous environment, but they still lack selectivity, so that a significant effort in research is devoted to overcome this limitation. Here, we focus on the diffusion properties of molecular species in the ...

متن کامل

Fast-switching all-printed organic electrochemical transistors

Symmetric and fast (~ 5 ms) on-to-off and off-to-on drain current switching characteristics have been obtained in screen printed organic electrochemical transistors (OECT) including PEDOT:PSS (poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonic acid)) as the active transistor channel material. Improvement of the drain current switching characteristics is made possible by including...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advanced Materials Interfaces

سال: 2023

ISSN: ['2196-7350']

DOI: https://doi.org/10.1002/admi.202202409